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Abstract— Location-aware computing becomes an exciting
research as recent advancements in RF circuits and wireless
communication stacks. In this paper, we present a fingerprinting
based location estimation technology in ZigBee network. The
system uses the signal strength from several base stations rather
than time or angle for determining the location of mobile
station. Instead of modeling the complex attenuation of signal
strength, the system models the probabilistic distribution in
different geographical areas which we called fingerprinting. It
combines the measured data and fingerprinting to determine
the mobile station’s location. The experiment results demon-
strate the validity of location estimation in ZigBee network
based on fingerprinting.

Index Terms— -Location Estimation; ZigBee Network; Signal
Strength; Fingerprinting; Probabilistic Distribution.

I. INTRODUCTION

Advancements in electronics, computer and wireless com-
munication technology have promoted the development of
low-power, multi-function sensors, and enabled integrating
A/D converter, data processor and wireless communication
modules into a single chip. On one hand, seamless com-
munications among such devices and possible processing
centers can transform ordinary environments into intelli-
gent spaces [1]; on the other hand, the distinction between
communications and computation is blurring [2]. We are
being carried into pervasive communicating and pervasive
computing space in which context is an obvious attribute.
Context refers to the physical (position, time, weather) and
social situation (work or leisure place) in which computa-
tional devices are embedded [2]. As location becomes one
of the most import contexts, location-aware computing is
a recent interesting research area. It can provide services
such as personal security, children track, tourist guide and
entertainment.

The existed location systems, including the Global Po-
sitioning System (GPS) and wireless enhanced 911(E-911)
and cellular network-based usually work outdoors with
coarse granularity [3], worse in indoor and building-dense
environments. Another shortage is that we can’t transport
sensor data about the other contexts in these networks. Other
systems were developed for short range, indoor and precious
location using infrared, ultrasound or RF and ultrasound
combined techniques. AT&T’s Active Badge, which uses
diffuse infrared technology has difficulty with fluorescent
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lighting or direct sunlight, but can get room-size accuracy.
Active Bats, which also comes from AT&Tuses an ultrasound
time-of-flight lateration technique getting more accurate (9
cm), but requires large scale deployment and high cost.
MIT complemented the Active Bats by using a radio fre-
quency control signal, which names Cricket. Although it
does not require a grid of ceiling sensors, the Cricket lacks
of centralized management, and the mobile receivers have
heavy computational and power burden [4]. Another critical
disadvantage of all the three systems is that they only provide
light-of-sight (LOS) location estimation.

As we know the 802.11 (predominant are 2.4 GHz 802.11b
and 802.11g) Wireless Local Area Network (WLAN, also
called Wi-Fi in business) is installed popularly, and using
this data network to support ubiquitous-covered, accurate
location estimation is increasingly gaining passion since
Microsoft developed RADAR. By recording the received
signal strength (RSS) from existed several 802.11 Access
Points and comparing to empirical measured data, RADAR is
able to estimate user location in office or home environment
easily [5]. Carnegie Mellon University [6], IBM [7], Mary-
land University [8] and Pittsburgh University [9] also have
started deeper research and system evaluation. These systems
have almost the same sensing devices, reference points but
different algorithms and infrastructures. The performances
reported are similar (4 feet [6], 6 feet [7], 7 feet [8] and 9
feet [9] respectively over 90%).

All the location estimation approaches that based on
WLAN’s Received Signal Strength Indication (RSSI) are
used in indoor environments and passively up to now. As
the data network is not transparent and sensing-oriented,
the context-awared services provided by such systems are
limited. And the infrastructures of the network are not es-
tablished for location estimation generally, in another word,
the deployment, change and movement of the network are
out of the location system’s control.

In this paper, we implement the location estimation system
adopting ZigBee based network, which is a short rage, low
data rate, low power consumption and low cost network
technology. ZigBee’ target aims at automation and remote
control applications through easily constructing ad-hoc, mesh
networks, and it will provide more ubiquitous coverage.
Theoretically speaking, the location estimation algorithm
used in ZigBee network may be the same as used in WLAN.

The remainder of this paper is organized as follows:
Section II describes the research methodology in detail of
hardware, architecture and algorithm. Section III discusses
implement process and analyses the results. And Section IV
concludes the paper and gives summary of future work being

1-4244-1266-8/07/$25.00 ©2007 IEEE.



Fig. 1. Diagram of ZigBee stack.

Fig. 2. Application profiles.

undertaken.

II. RESEARCH METHODOLOGY

A. ZigBee Network

ZigBee uses IEEE 802.15.4 standard as its PHY and MAC
layer standard which defines a 250k bps direct sequence
spread spectrum (DSSS) radio operating in the 2.4 GHz
unlicensed band, with lower bit-rate alternatives in the 868
MHz and 900 MHz bands [11]. Above the MAC layer,
ZigBee defined network layer (NMK) and application layer
(APL) [10]-[12]. The diagram of the stack is showed in Fig.1.
[12], [13].

RSSI is the basic function we use to form fingerprinting
and measure data. As the multi-path affection in upstream
and downstream is usually different, the RSSs received by
Beacon and MS are different. Although we have defined
two Clusters in Location endpoint: the RemoteLocation and
LocalLocation. But in this paper, only the LocalLocation
cluster is used. Fig.2 presents the attributes and clusters
defined in the application profiles.

B. System Methodology

In our system, some Beacons are fixed in several points
evenly to make sure that mobile station (MS) can receive
n (3 to 5 as usual) points’ radio signal at each location.
The MS records and processes the RSS vector and then
searches the fingerprinting database to find some finger-
printing which makes the algorithm criterion maximum.
Each fingerprinting is formed by a phase of training in a

Fig. 3. System methodology (n=3).

location. Error distance is used to evaluate the result. System
methodology is showed in Fig.3. Oxy = (o1

xy, o2
xy, ..., on

xy)
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is the observed RSS vector from beacons at location Lxy,
and Fij = (f1

ij , f
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T is average RSS of location
Fingerprinting database is constructed by a process of offline
training. Denote a series offline training measurement of
beacon k at location Lij is L = [lk0
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kM−1
ij ] which enables

computing the histogram hk
ij of signal strengths for each

beacon indexed k:

hk
ij(ζ) =
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δ(lkm
ij − ζ),−255 ≤ ζ ≤ 0 (1)

where ζ represents the Kronecker delta function [14].
The estimation algorithms will map the online observed

data Oxy to some physical Lxy by using probabilistic
method; detail is described in II.C. We define two error
distances to evaluate the accuracy from signal and physical
space respectively. The signal space’s Euclidian distance
between Oxy and Lxy is [9]:

Dist(Oxy, Fij) =

√√√√
n∑

k=1

(ok
xy − fk

ij)2 (2)

And the physical space’s Euclidian distance is:

Dist(Lxy, Lij) =
√

(x − i)2 + (y − j)2 (3)

C. Location Estimation Algorithm

Radio waves can be modeled accurately in free space
[7]. But in practical environment, the radio channel is of
noisy characteristics by reflection, absorption, diffraction,
scatteration and even the fluctuation of temperature. So the
signal transmitted from beacon usually reaches the mobile



station by more than one path, resulting in a phenomenon
known as mutli-path fading [13] [15] [19]. The observation
Oxy deviates significantly from Fij Fortunately, through
observation the signal strength’s temporal distribution pre-
sented in III.C, we conclude that the distribution has obvious
statistical character. So we applied a probabilistic approach
using Bayesian inference.

Suppose there are 4 beacons deployed in system. The
estimation algorithm’s target is to find a location Lij hat
makes the probability P (Lij |Oxy) maximized.

Mathematically, the probability P (Lij |Oxy) can be repre-
sented as:

P (Lij |Oxy) =
P (Oxy|Lij)P (Lij)

P (Oxy)

=
P (Oxy|Lij)P (Lij)∑J

j=1

∑I
i=1 P (Oxy|Lij)P (Lij)

(4)

where conditional probability P (Oxy|Lij) is the likelihood
of Oxy occurring in the training phase of Lij . And P (Lij) is
the prior probability of location Lij being the correct position
[15] and is usually uniformly distributed if the position
relative to the map is entirely unknown.

The CSMA/CA mechanism ensures the signal from differ-
ent beacons independent from each other, so the joint prob-
ability distribution then becomes the problem of estimating
the marginal probability distributions as:

P (Oxy|Lij) =
n∏

k=1

P (ok
xy|Lij) (5)

where
P (ok

xy|Lij) = hk
ij(ζ) (6)

is the location fingerprint can be obtained in the offline
training phase [14]. We can conclude two points about
whether the methodology works:

1) Feasibility: hk
ij(ζ) itself being stable enough and∏n

k=1 hk
ij(ζ)being sensitive to different (i, j) are necessary

conditions.
2) Practicability : Each histogram hk

ij(ζ)’s distribution
is narrow. In another word, the standard deviation should be
small. Only several ζ are high-frequent, so the small search
space of the algorithm insures the practicability.

III. IMPLEMENT AND RESULTS

A. ZigBee Module

We implement a ZigBee module adopted TI’s single-chip
2.4 GHz IEEE 802.14.5 compliant RF transceiver CC2420
and MicroChip’s enhanced Flash and nanoWatt technology
microcontroller PIC18LF4620. A LCD module was added
to coordinator node for displaying some useful network
information such as network finding, orphan notification,
association and disassociation. And an EIA RS-232 interface
is also supported to receive command from or send network
information to an attached laptop. The module is presented
in Fig.4 and the system components are presented in Fig.5.

For location estimation application, the wireless modules
are fixed on ceiling usually. To obtain even covering in

Fig. 4. Wireless module.

Fig. 5. System components.

estimation area, we apply the 2.4 GHz 50 ohm inverted-
F antenna which gets 1.1 dB gain and omni-directional
radiation pattern in PCB plane [22]. The module can evenly
cover about 30 meters in clear space and 18 meters in indoor
space as be programmed to 0 dBm output power with the
typical -95 dBm receive sensitivity.

B. Layout of Experimentation

The experiments were carried out in an office room dimen-
sions of 7.2m×9m×2.6m. The layout was depicted in Fig.
6. All the beacons are fixed on the ceiling and powered by
batteries. They are separated near the four corners that enable
them provide even four-overlap coverage in all portions of
the office. The calibration points where the mobile stations’
signal strength was collected are denoted by the gray square.
And the arrow’s direction indicates the operator’s orientation
as the attenuation by operator’s body can effect the signal
strength significantly [5] [7] [9]. For carrying out experiment,
we only defined 34 calibration points, and in each point we
collect the signal strength only in one direction. The laptop
connected with a wireless module by serial cable was put
on a small desk with 0.7 meter height which can be moved
stably.

C. Signal Statistical Character

Multi-path fading and people’s activities lead the RSSI
luctuating, such as Fig. 7 shows. We took numerous mea-
surements at various locations under different scenes to see
whether the feasibility and practicability can be obtained



Fig. 6. Layout of the experimentation environment.
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Fig. 7. Typical signal strength received by MS.
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Fig. 8. Short-term measurement from L1.
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Fig. 9. Short-term measurement from L2.

from statistical viewpoint. Experimentation was designed
as collecting RSSI of beacon3 at location L1 and L2 re-
spectively. The two locations are separated by 1.2 meters,
and nobody resident below L1 but frequent activities occur
around L2 . The short-term measurement lasts 2 minutes at 5
Hz sample rate and the long-term collection lasts 50 minutes
at 0.2 Hz. Fig. 8 and Fig.9 presents the short-term high-
rate measurement results. We have concluded below from
the histograms:

• L1 has higher mean value than L2. The instinctive
reason may be L1 being closer to beacon and signal
strength is sensitive to the distance between location
and beacon.

• Both of the locations get very small standard deviation
in short time. L2 has larger deviation mainly for people
walking in aisle frequently.

The long-term probabilistic distributions are depicted in
Fig. 10 and Fig. 11. The two distributions show these
characteristics obviously:

• The two distributions have some similarities of mean
value and standard deviation, as the signal has property
of long-term stability.

• The shape of the long-term distribution is smoother than
that of the short-term distribution; this is consistent to
the result of [7].

• Left-skewed distributions are prominent with both short-
term and long-term measurement that could be approx-
imated by a lognormal distribution; this is consistent to
the result of [9].

It is concluded that the statistical characters of signal
from one beacon ensure the feasibility and practicability.
However, the system’s performance depends on the sepa-
ration of location fingerprints. To investigate how the pattern
of fingerprinting at different locations effects the location
separation, we carry out the experimentation at location L1

and L2 by measuring signal strength from beacon 2 and
beacon3 at the same time. 100 groups of data are sampled
in 20 seconds. Fig. 12 plots the frequency of occurrence
of each sample pattern. The plot shows most of data is
surrounding the centers. L1 has more sharper peak for the
its peaceful surroundings. It suggests that only two beacons
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Fig. 10. Long-term measurement from L1.
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Fig. 11. Long-term measurement from L2.

are sufficient for distinguishing the two locations. The valley
between them is very clear that the edge can be used by the
algorithm as boundary of classification. We believe adding
more beacons can promote the performance greatly. So in
system implementation, we add beacon 1 and beacon 4 as
Fig. 6 shows.

Fig. 13 shows how the mean RSSI (10 samples @ 5 Hz)
varies at 30 calibration points. Compared with Fig. 2 in [5],
we find our results fluctuate frequently. It suggests that in
office environment, it is more sophisticated than corridor.
When the BS is about 6 meters away from the beacon, the
mean value fluctuates with ±5 dBm as dashed shows because
of the number of reflect path increases greatly in such points.
But in positive points, the RSSI is sensitive to locations in
such environment.
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Fig. 12. Separation of location fingerprints.
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Fig. 13. Mean RSSI in calibration points .

D. Offline Training Phase

The location fingerprinting is collected at each point of
the 30 calibration points. The probabilistic distributions of
four directions are obtained by (1) where we use the sample
rate 5 Hz and 10 samples per point.

E. Online Estimation Phase

We pick points around the calibration points randomly
to perform the online estimation phase, which contains two
steps for each location. First, measure and average the RSSI
from beacons. We take 4 samples per beacon at 5 Hz
sample rate to insure this step will be finished in less than
4 seconds. The average RSSI forms the observation tuple
Oxy = (o1

xy, o2
xy, o3

xy, o4
xy)T and be applied in (4) (5) (6)

to triangulate location Lij . Second, search the fingerprinting
database which stores the prior probability hk

ij(ζ) to find the
(i, j) which makes P (Lij |Oxy) maximized.

F. Results and Analysis

Our experiments returned 70% correct locations average
with the tolerance of 0.5 meters. Most false estimation
happen when someone was standing near the mobile sta-
tion or crossing fast under the beacon. Another important
phenomenon confused us is that, although the TI’s design
note indicates omni-directional radiation pattern [23], the
direction of the module which connected to the laptop impact
the RSSI obviously. We suspect it as the battery or LCD’s
influence because they are the only obstructs that block the
radiation of the antenna. However, this will be analyzed in
future.

IV. CONCLUSIONS AND FUTURE WORK

A new location estimation technique based on finger-
printing in ZigBee network has been introduced. Through
collecting received signal strength from several beacons to
form training dataset and comparing the mobile station’s
online collected signal with using Bayesian inference, the
system can triangulate the location within 70% accuracy with
the tolerance of 0.5 meters that is quite encouraging.

Compared with other indoor location systems based on
WLAN [5]-[9], [15]-[19], this design has the similar system
methodology and even the same algorithm [7]-[9], [17]-
[19]. But this work first extends the method into office



environment by the easy network construction. And our
design is not only fit for indoor but also outdoor environment
with much lower cost. It can provide a set of embedded
location-aware applications such as wireless sensor network.

Our work can be extended in several directions. Several
pattern classification methods can be applied and evaluated,
such as k-Nearest Neighbor [5], Neural Network [20], and
Support Vector Machine [20]. Direction sensors can be added
to reduce search space of the fingerprinting database such as
digital compass.
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